Preconditioning the Pressure Tracking in Fluid Dynamics by Shape Hessian Information
نویسندگان
چکیده
Potential flow pressure matching is a classical inverse design aerodynamic problem. The resulting loss of regularity during the optimization poses challenges for shape optimization with normal perturbation of the surface mesh nodes. Smoothness is not enforced by the parameterization but by a proper choice of the scalar product based on the shape Hessian, which is derived in local coordinates for starshaped domains. Significant parts of the Hessian are identified and combined with an aerodynamic panel solver. The resulting shape Hessian preconditioner is shown to lead to superior convergence properties of the resulting optimization method. Additionally, preconditioning gives the potential for level independent convergence.
منابع مشابه
Numerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds
Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...
متن کاملStudy of geometric shape and water circulation pattern in fish tanks using computational fluid dynamics
Providing comfort conditions for fish from the point of view of velocity uniformity and flow regime is one of the most important requirements of aquaculture improving the production conditions. In this research, for this purpose, by using computational fluid dynamics, Fluent software and k-ɛ turbulence model, the geometrical shape and pattern of water circulation in a fish breeding pond have be...
متن کاملModeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)
Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...
متن کاملMultiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics
Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...
متن کاملInvestigation of the Effect of Geometry and Type of Nanofluids on the Heat Transfer Inside the Microchannel using Computational Fluid Dynamics (CFD)
The purpose of this article is the numerical study of flow and heat transfer characteristics of Nanofluids inside a cylindrical microchannel with rectangular, triangular, and circular cross-sections. The size and shape of these sections have a significant impact on the thermal and hydraulic performance of the microchannel heat exchanger. The Nanofluids used in this work include water and De-Eth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009